

High School Science Virtual Learning

Chemistry Mole→ Gram Stoichiometry Continued April 15th, 2020

Chemistry Lesson: April 15th 2020

Objective/Learning Target: The Learner will be able to apply stoichiometric principles to perform Mole to Gram calculations in chemical reactions.

Bell Ringer Question 1

Tin metal reacts with hydrogen fluoride to produce tin (II) fluoride and hydrogen gas according to the following balanced equation.

 $Sn(s) + 2HF(g) \rightarrow SnF_2(s) + H_2(g)$

How many moles of hydrogen fluoride are required to react completely with 75.0g of tin?

Bell Ringer Question 2 Hydrogen sulfide gas burns in oxygen to produce sulfur dioxide and water vapor.

 $2H_2S(g) + 3O_2(g) \rightarrow 2SO_2(g) + 2H_2O(g)$

What mass of oxygen gas is consumed in a reaction that produces $4.60 \mod SO_2$?

Bell Ringer Answers:
1.
$$75.0 \text{ g Sn} \times \frac{1 \text{ mol Sn}}{118.69 \text{ g Sn}} \times \frac{2 \text{ mol HF}}{1 \text{ mol Sn}} = 1.26 \text{ mol HF}$$

2. $4.60 \text{ mol SO}_2 \times \frac{3 \text{ mol O}_2}{2 \text{ mol SO}_2} \times \frac{32.00 \text{ g O}_2}{1 \text{ mol O}_2} = 221 \text{ g O}_2$

This is a continuation of the previous lesson. If you need a refresher, rewatch the video below. If you are ready you can jump to the practice.

Stoichiometry 4: Mole to Mass Stoichiometry (Mole to Grams)-Beals Science

Practice

1. From the reaction: $B_2H_6 + O_2 \rightarrow HBO_2 + H_2O$

How many moles of water are produced from 19.2 g of B_2H_6 ?

Practice

2. Given the following reaction:

$Na_2S_2O_3 + AgBr \rightarrow NaBr + Na_3[Ag(S_2O_3)_2]$

How many moles of $Na_2S_2O_3$ are needed to react completely with 42.7 g of AgBr?

Practice

3. How many grams of CO_2 are produced if 2.09 mol of HCl are reacted according to this balanced chemical equation?

 $CaCO_3 + 2HCI \rightarrow CaCl_2 + CO_2 + H_2O$

Practice: Answers

- 1. 1.39 mol H₂O
- 2. 0.455 mol $Na_2S_2O_3$
- 3. 46.0 g CO₂

Try this practice below.

Worksheet #1- Answers

Worksheet #2- (Answers are found at the end of the document)

Additional video to help you out.

Moles to Grams Stoichiometry- SmarterTeacher